

Halibut farming in Europe

St. John February 19th

Arnar Jonsson General Manager Fiskey Ltd.

Challenges of Halibut farming

- Juvenile production
 - Complicated larval rearing
 - Quality of juveniles (pigmentation, eye migration and growth potential)
 - Disease (IPN and VNN)
- On growing
 - Needs surface area for growth
 - Long growth cycle
 - Capital intensive production
- <u>Market Development</u>

Juvenile production

FISKEY (Fiskeldi Eyjafjardar)

- The company was established in 1987
- The aim was the mass production of halibut juveniles for on-growing and marketing of farmed halibut.

Successful mass production of juveniles in 1998

First fish on the market in 1999

Largest juvenile producer in the world for the last 5 years

Organization chart

Fiskey's production sites

Juvenile production Historical data

Juvenile production - Fiskey

- Focus on intensive production since 1991
 - Indoor facilities where all environmental parameters can be controlled
 - Brood stock spawning time manipulated (light manipulation)
 - Live feed cultivation (predicted quality and quantity)

Year	Number (>5g)
1996	35.000
1997	50.000
1998	220.000
1999	290.000
2000	300.000
2001	340.000
2002	440.000
2003E	700.000

Juvenile Quality

- Metamorphosis
 - Halibut larvae go through a complex change from symmetric larvae (round fish) to an asymmetric juvenile (flatfish)
 - Deficient nutrition before and during metamorphosis results in poor developed fish.
 - Poor eye migration
 - Reduced performance in on-growing (visual feeder)
 - Malpigmented fish
 - Lack of pigment cells on skin results in vulnerability to sun exporsure (sunburn)
 - Marketing complications?

Juvenile Quality - Fiskey

Juvenile Health - Fiskey

- Disease free status
 - Intensive production allows for better health management.
 - Regular screening for pathogenic virus and bacteria
 - Long history of disease free status

•IPN and VNN has successively caused problems in Norway and Scotland.

Juvenile Performance

- Healthy fish.
 - Successful juvenile production (high survivals) indicate optimal conditions and is therefore likely to result in undamaged fish with good growth potential.
- <u>Ultimate measurement of quality is overall</u> performance up to market size fish.
 - Implementing <u>breeding program</u> (genetic enhancement) is vital.
 - Breed out early maturing males.
 - Breed in fast growing fish of good flesh quality.
 - Latest DNA technology is a useful aid

Work on first generation (F1) as soon as possible

On growing

- Recent developments in Norway look promising.
 - Nursery stage prolonged (0.5-2 kg)
 - Optimal conditions up to 1kg can <u>reduce total growth</u> time 8-12 months
 - <u>Lower mortality</u> in land based tanks than cages which is important because of the high value of each fish.
 - Shelf system designed
 - Improves growth and FCR
 - Better yields from each cage
 - Automatic feeding system
 - Improves FCR
 - Save labour cost

Growth – Impact of temperature control

Growth – Impact of size

On Growing – Need for Nursery

- Maintaining optimal temperature for fish below 1 kg is essential to reduce growth cycle
- Small fish have higher growth potential than large fish

Land based Nursery essential

Resirculation systems improve economy of operation and provide better temperature control

Halibut cage system

Cage systems

- Low investment compared to land based farms.
 - 1000 tn land based farm costs 15-20 million \$ (CAN)
 - 1000 tn cage system costs 1.5-2.0 million \$ (CAN)
- Shelves allow for much better yield from the cages
 - Up to 50-75 kg/m² can be expected.
- Deep cages (>10 m)
 - Fish better protected from sun
 - More stable conditions (temperature, salinity, current etc.)

Halibut production

- There are few Halibut producers and they will tend to be big
 - Economy of scale reached at 500-1000 mt
 - Intensive capital investment (buildup of biomass for 3-4 years)
- The production in Europe for the next 3-4 years will reach 3000-5000 MT
 - Largest producers will propably be:
 - Marine Harvest (Norway)
 - Dönna Marin (Norway)
 - Stolt Sea Farm (Norway)
 - Nordic Seafarms (Norway)
 - Marine Harvest (Scotland)

Production Cost in Norway

		= 3.0 USD/Lbs.		= 1.2 USD/Lbs.		
Total costs	6.692.000	6,69	100,0 %	2,56	100%	
Net financing costs	910.000	0,91	13,6 %	0,07	3%	
Process. and transp.	756.000	0,76	11,3 %	0,35	14%	
Cost of production	5.026.000	5,03	75,1 %	2,14	84%	
Other operating exp.	560.000	0,56	8,4 %	0,37	14%	
Depreciation	490.000	0,49	7,3 %	0,12	5%	
Energy, O2 costs	224.000	0,22	3,3 %			
Wages and benefits	700.000	0,70	10,5 %	0,20	8%	
Insurance costs	392.000	0,39	5,9 %	0,05	2%	
Feeding costs	1.400.000	1,40	20,9 %	1,10	43%	
Cost of juvenile	1.260.000	1,26	18,8 %	0,30	12%	
	USD	USD/kg	%	USD/kg	%	
-	EUMANN			Saillon		
Av. production time		Salmon				
Av. harvesting weight		Paral	<u>la la l</u>			
FCR	1,25					
Price per juvenile	5,60 USD					
Juveniles put to sea						
2 sea snes Yearly production level (MT)						
Land based on growing	Uj	p to 1-1.5 kg				
I and have done another	TT					

Data from Nordic Seafarms (Norway)

Prospects

- Atlantic halibut is one of the most highly prized edible fishes
 - Tasty, firm white meat.
 - Can be prepared as steaks or fillets
- High price niche product.
- Atlantic Halibut farmed in less than 1000 MT today

Wild Cach of Halibut

Price USD/lbs (2001)

Market Development

- Largest market for Halibut is in North America
- Most of the fish produced in Europe will be sold on the European market.
 - Some production will enter North American market but then there is an additional 20% transport cost.

Canadian producers benefit from closeness to the market

Thank you